Bremen

Y

Massively Parallel Algorithms
Parallel Hashing & Applications

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

<N

--N3)

e e



Bremen

U The Dictionary as an Abstract Data Type

* Frequently, the following operations are needed in an algorithm and
executed a lot of times:

* Insert (key,value)
* Sometimes, keys are unique, sometimes not!

* Retrieve a value by its key (or all values with the same key)

* Wanted: O(1) for both operations

* Implementations:

e Hash table

* Sorted array? nope, not even amortized complexity is in O(1)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing



Bremen

Y  Application: Intersection of Point Clouds

* Given: two point clouds representing two surfaces

* Task: compute "intersection" of the surfaces
 If surfaces are continuous — intersection is usually a set of curves in space
e Here: intersection = set of points close to those curves

* Approach:
e Superimpose background 3D grid

* Find voxels occupied by both surfaces

[Alcantara et al., Siggraph 2009]

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 3



Bremen

Y Representing Geometry in a Voxel Grid

Voxel grid = 3D grid partitioning space, voxels = empty or occupied
Example:

* 10243 voxel grid = 1 billion voxels

* Only 3.5 million voxels occupied = 0.33%

n practice: # occupied voxels € O(N2), where N = voxel grid resolution

dea: store voxel grid in hash table (aka. spatial hash table)

e Key = integer coordinates

X coord y coord z coord
\ A A J
Y Y Y
10 Bit 10 Bit 10 Bit

e Or any other arrangement (e.g., Morton code)

* Value = color, normal, ...

G. Zachmann Massively Parallel Algorithms SS July 2022

C\‘vﬁ: =
J\‘ 1’ w
4 it 1 :.
° C G :l:
" VR A

Parallel Hashing




Bremen

Y Algorithm for Point Cloud Intersection

* Given: two point clouds with normals
e E.g. from Kinect, upload to GPU
* First stage: build spatial hash table using one thread per point

e Transform point by user-defined transformation (e.g., viewpoint transform)
e Calculate integer x, y, z coordinates (scaling / rounding)

* Assemble key (shift bits, or interleave bits for Morton code)

/N Voxels = key
9 (TTTTTTT I T 11 1 T T 1
%f 000000000000 000000000000000
—— Points = values

# points

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing



Bremen ;

N o s
L’ -
7. cc a
el VR X

* Second stage: find intersecting voxels

* One thread per occupied voxel

e Translates to one thread per hash table slot, empty slots/threads do nothing

v = voxel of thread
v' = corresponding voxel in other object's hash table

if v' 1s occupied:
mark both v and v' as intersecting

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 6



Bremen

Y

* Third stage: determine voxels inside/outside of surface
* One thread per occupied voxel (for both objects in parallel)

v = voxel of blue thread
if v not intersecting and
v has intersecting neighbor v':
t=v - v' // a "tangent" to the blue surface in v'
n = normal of voxel in red object corresponding to v'
normalize n and t
if t*n < cos(110°):
mark v as "inside red"
if t*n > cos(70°):
mark v as "outside red"

G. Zachmann Massively Parallel Algorithms SS July 2022

Parallel Hashing



Bremen

Y

* Fourth stage: propagate inside/outside status along surface voxels
* One thread per occupied voxel
* Do nothing, if own status is already set
* Otherwise, repeatedly check neighboring voxels, copy their status, as soon as they've got one

° Loop until __syncthreads count or __syncthreads or yields O

* Def. of int _ syncthreads count( int predicate ):

like syncthreads, but evaluate predicate for all threads (in block), and return number of threads for
which it is non-zero (each thread gets the same count)

e Here, devise predicate that tells whether a thread has changed its status during current iteration

* Performance: ca. 20 msec/trame
* Voxel grid = 1283, point cloud = 160k
* Upload of point clouds takes another 5-10 msec / frame

* Also possible: Boolean operations on the surfaces

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 8



Bremen

Y

Example Video

ntersect B
67 FPS
mputation: 14 ms

G. Zachmann Massively Parallel Algorithms

SS

July 2022

Parallel Hashing



Bremen

Y Application: Geometric Hashing

* Well-known technique for image matching

e Task:

* Find (smaller) image (model) in large image (scene),
including position/orientation/scaling

* Preprocessing is OK - In that image

* Approach: consider only feature points
* A.k.a. salient points, corner points, interest points

140k pixels B 946 feature points (0.67%)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 10



Bremen

11

Introduction & Displays

Scene
July 2022

WS

Computergraphik 1

kw a,ﬂ, _

Q@
oN
-
(qu) =
> E
LL] kS



Bremen

Y

First (Naive) Approach

* Preprocessing: build database of all models

* One inputimage per model

* Extract and store m feature points 7 = {F, ..., F.,} (per model)
° At runtime:

* Extract n feature points in scene image S = {S;,...,S,}

* Pick 3 non-collinear points A, B, Ce ‘F, and 3 points A', B', C' € §
(a 3x3 pairing)
* Compute affine transformation mapping A, B, C — A", B', C'

* Map all points in ‘F, calculate quality of match (e.g. RMSE)

* Repeat with all possible 3x3 pairings

e Choose optimal one (e.g., smallest RMSE)

G. Zachmann Massively Parallel Algorithms SS July 2022

Model

Is the model in the scene?
If so, where is it?

Parallel Hashing

<N

12

E-N1]

m e



Bremen

Y

Digression: On Calculating the Affine Transtormation

* Given A, B, Cand A', B', C' - determine M s.t. MA=A',MB=B', MC=C

* We are looking for a matrix M and vector T such that

a., _ (M M2 dx n (% ¢
3;, Mmo1 Moo dy ty

B
or, equivalently /
A
a mi1 My i ax
a, | =|(mun mn t ay N
1 0 0 1 1 '
* The 3x3 pairi ' M P
e 3x3 pairing gives us ) M / A / B
a; b; C>/< mpy M I dx bx Cx A @ g
afv b;, c; = | my mxp t, a, b, ¢
1 1 1 0 0 1 1 1 1

* Multiplying by P-T will yield M

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 13



Bremen

Y Complexity of the Naive Method

* There are m3n3 possible 3x3 pairings
e Assumem = 0.01n — m € O(n)

* Cost for computing one match (given aff. transformation) € O(m)

* In reality, it is worse, since for each model point, we need to find the closest
scene point

* Overall complexity € O(n’) — ouch!

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing



Bremen

Y Geometric Hashing

G. Zachmann

ldea: represent model in affinely invariant way

Pick any 3 non-collinear points A, B, C e ‘I; call this a basis

All points P; € J' can be represented wrt. this basis:

P, = A+ u(B — A)

4

? l:l
¥ cc s
" VR

Pi = (u,v)

v(C — A)

Any affine transformation of the model will leave (u,v) invariant C Pi = (u,v)

* Hence, (u,v)-representations are called invariants

It only rotation & translation are allowed, then construct a basis

as follows:

’ick any two points A, B € F (not too close together)

et a := normalize(B - A)

et b :=(ay, -ax) , i.e., the vector perpendicular to a

Represent all other pointsas P = A+ ua—+ vb

Massively Parallel Algorithms

SS July 2022 Parallel Hashing 15



Bremen

Y

Preprocessing Bl

* Fill hash table with (u,v)-representations of all feature points wrt. all possible bases:

forall bases E = (A, B, C) c F :

forall other points P € 7

calculate (u,v) wrt. E
convert u,v to integer coords (scale & round)
store (P,E) with key (u,v) in spatial hash table

e Do this for all models M

* Note: can even store all models this way in one common hash table
— store (M, P,E) with keys (u,v)

* In the following: consider just one model (for sake of simplicity)
* Note: quantization of (u,v) provides actually some amount of robustness

* Slight shifts of the feature points do not change their hash table slot (in many cases)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 16



Bremen

Y

Example

Basis 1 Hash space Basis 3
§ i . . ’ .
¢
. , .
o ‘
Basis 2 i
- . (Basis, Point)
Basis 1, P. 1
Basis 1, P. 2
< — ¢ 0 Basis 2, P. 5
¢ ‘ o Basis 3, P. 17

G. Zachmann Computergraphik 1 WS July 2022 Introduction & Displays

W

ﬁ CG

" VR

17

e



Bremen

Y

* Note: more models can be added dynamically to the hash table

e Complexity of preprocessing: O(m+) per model

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing

18



Bremen

Y

? l:l
:5‘,""2 CG "’

Recognition s

* First phase: detect all feature points in the scene image — $

e Second phase: hypothesis generation = maintain number of "votes" for
each basis in the model

e Result: a histogram over all possible bases, one bin per basis of the model,
counting the number of votes for each basis

e The a|90rithm1 forall bases E € S :

clear histogram of votes

forall other points P € S :
calculate (u,v) wrt. E
convert u,v to integer coords (scale & round)
forall entries (B,X) in slot (u,v) of hash table:
increment vote count of histogram bin of basis B
forall bases B where #votes > threshold:
record hypothesis (B,E)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 19



Bremen

3

. (¥ =
.@ g\x : .:.
L' -

oo s

. cc =

i VR n

* Reasoning behind the algorithm:

* If E happens to be the basis where the model is present in the scene
— there is a "matching" basis B in the model

e Let M be the affine transformation from B to E

* For many points in F'= M(F), there will be a nearby pointin S

* Therefore, many points of the scene image will fall into hash table slots containing at least
one entry (B,*)

* Therefore, B will garner more "votes" than other bases of the model
* Note:
* Every hypothesis (B,E) provides an affine transformation M from model space into scene
space, such that "many" points in M(F) are "close" to a pointin $

* Meaning of "many" = "> threshold"
* Meaning of "close" = "< diameter of grid cell"

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 20



Bremen

...

=

R4 -
e
f. o

¥ cc =

- VR "

* Third phase: test the hypotheses

° AlgOnthm: forall hypotheses (B,E):
compute affine transformation M from B to E /] (*)

transform all model points — F = M(F)

let score of (B,E) = RMSE(T,YS)
choose the hypothesis (B,E) with the highest score

* Note: in the RMSE, we consider the closest pointin §$ to each pointin F
* Use spatial the hash table over § for that, or a kd-tree (see comp. geometry)

* Note on step (*):
* We could just use the method from slide 13 (aff. trf. for 3x3 pairing)

* More robust is a least squares method (omitted here)

* From hypothesis generation, we already have a kxk pairing

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 21



Bremen

Y

¢

h I:l
(] CG .l.

* Complexity of recognition € O(n4)

* In a way, the hash table serves as an acceleration data structure for finding
nearest neighbors quickly

* |deas:

e Use kd-trees, or

e Consider neighbor cells in the hash table, too

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 22

VR =



Bremen

Improvement in Case of Non-Uniform Distribution of Feature Points

* The distribution of the feature points in (u,v) space might be highly non-
uniform — lookup in hash table is no longer O(1)!

Letters Knives

4
4
i
“

Y P e e o i o s
q) ?",-.....‘, | e - i 400 b {“o.,.._ o S ‘:} '
H » N L ST ETE (
o Jdl et A e N
m iy L] ¥ : Mo ‘___‘__'_‘h_‘_’l) \
4 { L} : i'l1 —— s ‘
Q. \ Mo 300} I S e a
) F 2 ‘ 'Y B i s
z 5]' - -— ?l\.—‘ : - . . .
X2 s ) - . ~cl R A 201 et Tt . —
- el =0 5 M distribution
o I N v s
m L -~ . 4 00 % {:_.‘_< G —-} K
S 77 | R e, T SRR
) N : - ' ol i —
ol il o T 2 -
43! ‘1’ 7 e - ‘ I ! g bt B e
) ! N /7 3 3 \ ; ol BT e ’/4
- - 3 e £ 3 < o
= O MF T ' -~ =g
1 ; . =
‘ L] ‘ san Sk 5 DW“_? . :: %&?ﬁgg‘&'l""' ""“':{
U a ad b -4' - ; R - %}é&:{&g o‘:'. o,
ey b - e LS Pl
A A 2 A A o—" " o — A " - e = s
0 5 w 5 2 25 0 ) [ 00 15 00 MO 00 I 0 50 S0 680 =
& - - - . v ' a0 ! v ~ (a)
. L INVARIANTS numnors « MVASANTS wnms «
.-
(8 8 - . - : o. N 4 4 e : . 4 &0 s >
L I N O L x
m ) - .. '. - . ‘o
- - - - L R - . - . - 4 e
— -
5 P LR inEe : : Good
. . ot L
m ) - - - - 4 - - D) P do -b .
L : -
S : d8ed s g Istribution
(1] 8 - - % . . - oF - '—.«A\o"‘%:‘"
L . g CEIX PR
. +" . . s “:"‘.‘\’.\"v%\ A
m 24 . :.: .I:.: . - Eatd 3 - ‘{"'-‘-; =
© : %5 3 b d P ., A
4 . . - - - : . . . 40 F 4 || |
L ~ AL e HH
" e smewvsdhe cr s » . . [ ||
- - e * e b . ||| 'l
5 - - es e - « e e - - < o0 . - |‘||||
- - . . - Ne e j
-8 » a A A A B0 A A i i i
4 € £ ry i 2 4 13 L NG {21 A0 20 i 20 “©0 110 4]

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing

23



Bremen

Y

* One approach: make the size of the voxels proportional to the density of the
data

ol po|®
3

C
OQOQ

ODDOO
©(eP| 0l0®

v
0°(c°| 9| o
O loa
Sl &
8""o"o
Bloo]| &0
O O |Ip|l O
o (@]

~ o
©c |lo1°jo

o OOOQ

G. Zachmann

Massively Parallel Algorithms

July 2022

Parallel Hashing

24



Bremen

"Learn" a Good Spatial Part

Y Other Approach

itioning

elastic" net that deforms based on the

* Consider the background grid as "

density of the data

* Kohonen neural networks do just that

data distributions

deformed grid

* -

I‘NAH\'ANYS wwas .

»
-

.

ae

acs

i

oa
LY
R ]

— - Jg
w = [ = (=] L=} = N
b N ] h ﬂ

-Nc -

z “
o
3

¥ J m

. o
>

| = g~

(w] o
z

"

o

v

1

-

™~

o

15 .

>

™~ ‘..v Ll - 1
_ _~ —y—— \.\4 | J—— 3
S T INTT T ])
g ,.l*\.lt\w ¢" . | f_ ...;r m N
_ A..__ ____ \ T __ /.\_+ .A &
e
ay N | ) v I L
”.Mu .._ Y a. \ __. _ ‘._ | _ \ f__ o
Hi R N
|
| J { ‘h _ 4 ~L~T ﬂ_ L
_:‘-..T s SR [ A ¢
| : ~N-T L
t \7...*/ ( ([ | b7
T _I..|.|_|ﬁ..\._

! T
1 Ly s
Uy ANEEE:
S S S
— S
- = o~ . q“ ..M - vl ~ -— =]
o L= o o L] o = o =

25

Parallel Hashing

July 2022

SS

Massively Parallel Algorithms

G. Zachmann



Bremen

Y Results

vact] fhae pisTHBUTION - Smilenty SH . TABLE_DISTREUTON - Afine

Original

()

1504 | e ,\si}lr’r 1€ DISTRBUTION - Sirsianty —
: |
-

008 -

Rehashing
(using a transfer

5ok ‘ ' !}i" N
ff IBIM function)
(c) (d)

| Learning

G. Zachmann Computergraphik 1 WS July 2022 Introduction & Displays 26



Bremen

Y

Noise

* Experience shows: performance of Geometric hashing degrades rapidly for
cluttered scenes or in the presence of moderate sensor noise (3-5 pixels)

e Possible solutions:

* Make additional entries during preprocessing (increases storage)

e Cast additional votes during recognition (increases time)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing

27



Bremen

Y Another Solution for Noise

e Observations:

1. The larger the separation of basis points, the smaller the effect of noise offsets on
the final slots in the hash table

2. The closer a point is to the origin of the basis, the smaller the effect of noise
offsets on the final slot in the hash table

3. Areas in uv-space with high density of feature points contain less information
than areas with low density — hash table cells with many entries contain less
information than cells with few entries

* Weight the vote of hash table entries based on these criteria

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 28



Bremen

U Massively Parallel Geometric Hashing § o

* Input: color image
* Feature point detection (both images):

* One thread per pixel
* Apply e.g. Sobel operator at each pixel (or, ORB, BRIEF, etc.)
* If above threshold, then output Cartesian coords
e Compact output array — m feature points
* Preprocessing (fill hash table):

* One thread per basis — m?3 threads

* Each thread iterates through all other feature points: calculate (u,v), store in hash table

* Optionally: just consider random subset of bases

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 29



Bremen

Y Object Recognition 8.

* One thread per basis £ in query image (n3 threads, or random subset), each
one iterates over all other teature points

* For each other feature point (u,v): iterate over all values B stored in the hash
table slot for key (u,v)

* For each such basis B: cast a vote for correspondence (B,E)
e Store votes in a matrix V of size m3xn3
® (Orless in case of random subsets of /3 and 53, resp., for the bases)

e Compact V: output all basis pairs with #votes > threshold

* One thread per element, or one thread per row

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 30



Bremen

Y Example

Model

Scene

————Seh

Moscow, RUssia

[Alcantara, 2009]

G. Zachmann isplays 31



Bremen

U Traditional Hashing

* Probing for resolving collisions in hash table

* E.g., linear or quadratic probing, or double hashing

A
* Parallel insertion requires serialization (locking of
the hash table)
* Consequence: all threads in a block wait until the
lock-holding thread has finished
> Long probing sequences are bad for the overall
performance of all threads in the block
>
A|F
WAIT
WAIT

WAIT

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 32



Bremen

Y

Cuckoo Hashing

* Fact: parallel hash table accesses are almost always uncoalsced
e Consequence: minimize number of memory accesses
* |dea:

* Each key k gets mapped to a number
of different hash table slots

* Instead of probing: use a number of @ h2(k), @

hash functions hs, ..., ht

h1(E) h1(G) h3(E) ho(G) ho(E) =
h3(G)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing

33



Bremen

©

clEle] (AlcRIele] [A[Mclo[E]E]
h3(A)  h2(D) h3(D)
hi(E)  ha(A)

* Note how keys can get evicted (hence the name) — eviction chain
e Hash functions are used in round-robin fashion
* In practice, "simple" hash functions work well:
* Randomly generate h;(k) = a;k + b; mod p mod m
with p =334 214 459, m = number of slots, and randomly generated constant a;, bi € [0,p)

* Variant: XOR instead of multiplication, p =4 294 967 291 (= 232-5)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 34



Bremen

Y

* Advantage: even in the worst case, lookup time is O(1) !
* Parallelization: one thread per key during insert/lookup
* Note:
* Threads in a block still need to wait for all others to finish
* Threads do not need to lock hash table (except for the atomic swap)
* Problem: insertion could fail
e Solution: stash
* During insert, a thread follows a "chain of evictions"
* If this gets too long (or ends in a cycle), give up — store key in stash
* Stash = simple array, or hash table with very low load factor

* |n practice, only 5 keys hit the stash

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing



Bremen

Y

The Algorithm
* Store key and value contiguously in memory ‘{ﬂass HashEntry
* Memory access is better coalesced uint32 key;

uint32 value;
* Allows to use single atomic swap operation for both

e |nitialization of hash table: fill all slots with entries (OxFFFFFFFF, O)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing

36



Bremen

Y

Insertion Into the Hash Table

fct insertIntoHash( key, value ): // can be called in parallel

entry = HashEntry( key, value )
slot = hash fct( 0, key ) // = ho (key)
repeat max tries:
entry = atomicExch( & table[slot], entry )
key = entry.key
if key == EMPTY: // found an empty slot
return true
// else, entry got evicted

for j = 0 .. n hash fct-1: // = £ from previous slide
if hash fct(j, key) == slot:
break // exactly one j must break
j = (j+1) mod n hash fct // try "next" hash fct

slot = hash fct(j, key)

try to append entry to stash (or insert if stash is a hash table)
if that fails:

signal failure to caller,

rebuild whole hash table with other random hash functions

G. Zachmann Computergraphik 1 WS July 2022 Introduction & Displays

37



Bremen

Y

Retrieval
fct retrieveFromHash( key ): // can be called in parallel
loop j = 0 .. n hash fct-1:
slot = hash fct( j, key ) // = hij(key)
if table[slot] == key:
return table[slot].wvalue
if table[slot] == EMPTY: // short-circuit
break

// key is not in main hash table
i1f stash was not used during construction:
return NOT FOUND

check stash

G. Zachmann Computergraphik 1 WS July 2022 Introduction & Displays

38

e



Bremen

Y A Quick Excursion into Theoretical Computer Science

* Question: what is the probability that cuckoo hashing works?
* Rephrasing:

o Let keys = K={x1, ..., xn}, slots=S={1, ..., m} , m>n

e Assume m=c-n , c>1fixed (e.g., c=1.4)

 1/c =load factor (I'll call c a load factor, too)

* For each x;, there is a given (random) set of permissible slots:
Si={ji,....jt} € S, where j; = hi(x;)

* Can we find a mapping 7 : K — S such that all z(x;) are mutually different, and
Vi:7(x;) € 5;7?

* What is the probability of finding such a ¢ ?

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing



Bremen

Y

Uz =
* Trick 1: associate a rectangular matrix M with the keys and slots

* Every row corresponds to one key, every column corresponds to one slot in the
hash table

* For each key x;, we fill its row in M as follows:
writea "1" in columns J{ . J; , and O everywhere else

e So, M is a nxm matrix over {0,1} (more columns than rows)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 40

VR =



Bremen

Y

* Example:
* n=4keys, m=7slots, k=3 different hash functions
e $1={2, 4, 5}
e S2={1, 2, 6}
* 535=1{3,4,7)
* S4=1{1, 3, 6}

e Matrix

<

|
—_ O = O
OO = K
— =0 O
O = O K
O O O =
= O = O
O = O O

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing



Bremen

Y

* Trick 2: associate a linear system of equations with the §;

* The system is
Mz=b
where all variables are only O's and 1's , and addition is modulo 2,
l.e., arithmetic is over the field Z, (so we have, for instance, an inverse)

e Choose b € {0,1}" randomly
- Exactly which b is not important, important is its randomness

* In the end, we won't care about the solution z (if any)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing

42



Bremen

Y The chain of arguments

* If the system has a solution (1)
— M has maximal rank in rows (i.e., all rows are linearly independent) (2)
— M has also maximal rank in columns =n
= we can pick n columns from M and form square matrix M’ with det(M') £ 0

e Consider the Leibniz formula for the determinant:

det(M') = Z Sig”((f)mi,au)m/z,a(z)"'qu,a(n)

o€Perm(n)

e Remember the special contents of M, and remember we calculate in Z!

* So,det(M') #0 = at least one of the product terms must equal 1

* Take the o that produces that term (or one of them)

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing



Bremen

-

3 (& 5=
@ <
t b I.l

oo s

-, CG :-:

i V R I.l

°* "Translate" the permutation ¢ into a mapping :

every o(i) corresponds to a column in M', which was an original column in M

— assign that column number to (i)

¢ SO, the term My +(1)M2,7(2) * * - Mpr(n) = 1

* In other words, every m; () = 1
* Remember that the rows represent the sets of possible slots for the keys

* So, we have found one slot per key out of the permissible ones and they don't
collide — cuckoo hashing works

* For this set of keys, and this set of hash functions!

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing



Bremen

@J) Example continued

* We can find 4 linearly independent columns (over Z, )

/0101100\ 0 1 0 1
1100010 1 100
M_O()llOOl :>M/:OO].O

ERR

1T 2 3 5

* The product in the determinant formula with o(1)=4, 6(2)=2, 6(3)=3, 6(4)=1 is non-zero

* This translates to ©(1)=5, ©(2)=2, 7(3)=3 und ©(4)=1 for M

* Indeed, 5 isin $7 (possible slots for key 1), 2isin Sz, 3inS3, 1inS: —

* We can store all keys in the hash table in one of their permissible slots

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 45



Bremen

Y

* Let M be a randomly chosen nxm matrix, but with the additional constraint
that there are exactly f 1's in each row. Let b be a randomly chosen {0,1}

vector of length n.
What is the probability that the system
Mz =Db

has a solution?

* Theorem (w/o proof):
It m=c-n, and ¢ > ¢, then such a system has a solution with high probability.

* The meaning of "high probability":
as n (and, thus, m) go to infinity, the probability approaches 1

July 2022 Parallel Hashing 46

G. Zachmann Massively Parallel Algorithms SS



Bremen

Y

* Theoretical and practical bounds for the load factors, c, i.e., #slots > cx#keys:

G. Zachmann

# hash fct f

Massively Parallel Algorithms

2

3
4
5

Ctheor

1.089
1.024
1.008

SS

Cpractical

2.1

July 2022

1

1.03
1.02

Parallel Hashing

47



Y Performance of Cuckoo Hashing .1

* Performance for insertion depending on hash table load tactor and number
of keys (on GTX 470, using 4 hash functions):

400
2 5
8%350 g 0O O O 0 oboo O
) O
]
o 300
Q.
3 250
E -&-2N
= 200 —6—1.42N
9]
=
qv)
Q. ——
g 100
S
; 50 g
© 8 %
q:l: 0 n m 2 1
512 2048 8192 32768 131072 524288 2097152 8388608

# keys (N) inserted in parallel

[Alcantara 2011]

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 48



Bremen

Y

* Performance for retrieval depending on hash table load tactor and number

of keys (on GTX 470, using 4 hash functions, no failed keys):

G. Zachmann

# key/value pairs queried per second

Millions

800

700

600

500

400

200

100

oo o
O
00 O o
\\\\\\ —==2N
— -6—1.42N
—
rn X
512 2048 8192 32768 131072 524288 2097152 8388608

Massively Parallel Algorithms

# keys in table (N)

SS

July 2022

Parallel Hashing

-

<N

49

E-N1]

m e



Bremen

Y

* Performance depending on percentage of failed queries (key is not in hash
table), N = 8.4M keys, GTX 470, 4 hash functions

* Failed query =4 regular probes into hash table, plus 1 probe into stash
(implemented as hash table)

800

o
S S
O E 700
2% o o
O
O 600 O -
i © o - C = m)
8 500 o o O O
= o o -5-2N
Qv o o
> 400 % o —6—1.42N
> o
(Vo]
=
8 -
O 200
=
C 100
Z
>
g 0 |
++ 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of failed queries

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing

50



Bremen

Y Comparison with a sorted array (

G. Zachmann

# key/value pairs per second

500

Insert

450

Millions

400

350

300

250

150

100

512 2048 8192 32768 131072 524288 2097152 8388608

Retrieval

Millions

700

600

500

etk
-

400

200

100

0 — t ! T f t

512 4096 32768 262144 2097152 16777216

# keys (N)

Computergraphik 1 WS July 2022

T

—Radix sort

=&—Chaining

5
-=-

+
Quadratic probing
—&— Chaining

—=—Two-level cuckoo

Binary search (shuffled)

slots = 1.42x#keys)

«— 3
3

(@)

3

S a— o
@

8..

2 Z
Q=
o2

(:f' (0

<3

Z _.

3 2

S ®

& &

Q o
4""" wn ~—
< o
C

(@]

=,

(@)

o

<« S

Introduction & Displays

51



Bremen

Y

Ideas for Further Investigation

* Store the hash function ID with the key in the slot (e.g. in a few bits)
* If it gets evicted, the thread doesn't have to re-compute this ID

* |s it possible to utilize shared memory for the build phase?
* Warning: Alcantara tried it

* |s it possible to optimize the hash functions?

* Choose a set of random hash functions, test insertion with a large number of random keys,
determine length of eviction chains

* Try a number of other hash function sets, pick the "best" one
* Instead of using the hash functions in round-robin fashion, randomize this part, too

* Theoretical question: how does that change probability of success?

* More hash functions hurt, but only because of global memory access — can we use 2
bytes next to a slot for hi,1 ?

G. Zachmann Massively Parallel Algorithms SS July 2022 Parallel Hashing 52



